SATHYABAMA

Institute of Science and Technology Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600 119. Tamilnadu, INDIA.

Choice based Course

Sponsored by Scheme for Promotion of Academic and Research Collaboration (SPARC)

Ministry of Human Resource and Development (MHRD)

Government of India, New Delhi

Collaborating Countries: India - Australia

Name of course: Biofouling and Coating for Engineering Applications

Course level: UG, III Year, (Sixth Semester) Elective course

Discipline: Chemical Engineering, Mechanical Engineering and Biotechnology

Lecture hours: 60 hours (Theory: 45 hours Practical: 15 hours)

Course Description:

The course proposed will provide the learning graduates an insight of the various reasons of biofouling in pipelines that transport crude and refined petroleum, gas, biofuels, other fluids including sewage, slurry, water for drinking or irrigation. The mechanism of biofouling will be dealt in detail. A comparison of various protective techniques will be highlighted for choice of methods for specific applications. The course will help in developing the interdisciplinary skill for Chemical Engineering, Mechanical Engineering and Biotechnology undergraduate students.

Course Contents(# of lecture hours)

Topic	Contents	# of hours
Unit 1	(a) Biofilms: Introduction of biofilms, Types of biofilms,	4.5h (PI
(a) Introduction to	Benefits and risks of biofilms, Mechanism of formation of	India)
Biofouling	biofilms and applications of biofilms. Degradation of Substrates	
Mechanisms and	exposed to harsh environment including oil/gas/biofuels and	
Substrates	aquatic environment	
(b) Introduction to membrane processes and biofouling mechanism	(b) Membrane processes (Reverse Osmosis, Nanofiltration and Ultrafiltration) for water and wastewater treatment and desalination, emphasising different forms of membrane fouling (inorganic and organic fouling, biofouling and biofilm formation)	4.5h (PI Australia)
Unit 2	Types of degradation; characteristics of materials degradation-	9 (PI
Biofouling and	causes and effects; physical, chemical and biological	India)
biocorrosion -	deterioration; Roughness, Fatigue, corrosion and leaching	
Mechanisms and	studies.	
failure analysis		
Unit 3	Introduction to Nanomaterials synthesis for coating applications.	7h (PI
(a) Biofilm	Techniques and importance of physical coatings - sputtering,	India)
Controlling	evaporation, Pulsed Laser Deposition; chemical deposition – sol-gel	
Coating	method, dip/spin coating, electrochemical method, electroless coating	
techniques	etc., Properties and application of metallic coatings, criteria for	

(b) Measurement of Biofouling	choosing a coating for biofilm control on metallic substrates for various industrial applications Pore blocking index and Assimilable Organic Carbon	2h (PI Australia)
Unit-4 (a) Substrate Characterization	(a) Introduction, Principle and Techniques of Fourier-transform Infrared Spectroscopy (FTIR), Optical Microscopy, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Microanalysis (EDS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Scanning Probe Microscopy (SPM); Thermogravimetric analysis (TGA), Raman Spectroscopy, UV-VIS spectroscopy, X-ray Photoelectron Spectroscopy (XPS)	4.5h (PI India)
(b) Membrane fouling characterization	(b) Use of analytical instruments such as Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray microanalysis (EDS), scanning electron microscopy (SEM), x-ray diffraction (XRD); UV-VIS spectroscopy, membrane surface zeta potential; contact angle analysis	4.5h (PI Australia)
Unit-5 (a) Antifouling Studies	(a) quantification of biofouling, Prevention of biofouling, Leaching, biocorrosion and antifouling treatment, biofouling of membranes, numerical modeling of biofilm growth	6h (PI India)
(b) Biofouling control through pretreatment	(b) Biofilter, membrane hybrid system, membrane cleaning.	3h (PI Australia)

Lab component

<u>Lab component</u>				
Experiment	Brief Description	# of hours		
Microscopic Studies for	To determine the microbial count and identify the	3		
Investigation of Biofilm on	genus using Epifluorescence microscope			
contaminated Substrates				
Total Viable Count (TVC)	To investigate the diversity of microorganism by	2		
of different microbes on	TVC on substrate exposed in environment			
substrates	•			
Metallic Coatings on	Ietallic Coatings on To prepare the substrate and synthesise the			
Substrates	metallic coating for electroless deposition			
(a) Substrate	(a) To study the surface morphology of metal	2		
Characterization	coated substrate by FESEM			
	·			
(b) Membrane	(b) To study the surface and element	3		
characterization	characterization of new and used/fouled	(PI Australia)		
	membranes	,		
Antifouling Studies	To perform exposure studies of the coated	2		
_	substrate in microbial culture for determining			
	antifouling efficiency of coating			

Reference:

Books

- 1. Biofouling Methods Sergey Dobretsov, Jeremy C. Thomason, David N. Williams, 2014, ISBN:9781118336144, DOI:10.1002/9781118336144.
- 2. Pipeline Coatings (e-book), Y. Frank Cheng & Richard Norsworthy, 2017, ISBN: 978-1-57590-335-4
- 3. Jeong, S., **Naidu, G.**, Leiknes, T., **Vigneswaran, S.** (2017) '4.3 Membrane Biofouling: Biofouling Assessment and Reduction Strategies in Seawater Reverse Osmosis Desalination', Comprehensive Membrane Science and Engineering, Elsevier, pp. 48–71, doi:10.1016/b978-0-12-409547-2.12261-9

Article/Chapter

- 1. **Vinita Vishwakarma** (2018), Impact of Engineered Nanomaterials for Environmental Industries, Handbook of Nanomaterials for Industrial Applications, eBook ISBN: 9780128133521, Chapter-52, PART-VIII Engineered Nanomaterials in Environmental Industry, pp 952-958.
- 2. Sudha Uthaman, **Vinita Vishwakarma***, R. P. George, D. Ramachandran, Kalpana Kumari, R.Preetha, M. Premila, R. Rajaraman and U. Kamachi Mudali (2018), Enhancement of Strength and Durability of Fly Ash Concrete in Seawater Environments: Synergistic Effect of Nanoparticles, *Construction and Building Materials*, 187, 448–459.
- 3. Synergistic Effect of Peak Current Density and Nature of Surfactant on Microstructure, Mechanical and Electrochemical Properties of Pulsed Electrodeposited Ni-Co-SiC Nanocomposites by R D. P., Patra A., Sengupta S., Das S., Das K. Journal of Alloys and Compounds 729 1093-1107 (2017)
- 4. Shon, H, Phuntsho, S, Vigneswaran, S, Kandasamy, JK, Aryal, R & Jegatheesan, V 2012, 'Physical, Chemical, and Biological Characterization of Membrane Fouling' in Zhang, TC, Surampalli, RY, Vigneswaran, S, Tyagi, RD, Ong, SL & Kao, CM (eds), *Membrane Technology and Environmental Applications*, American Society of Civil Engineers, USA, pp. 457-497.
- 5. Guo, W, Ngo, H & Vigneswaran, S 2012, 'Fouling Control of Membranes with Pretreatment' in Zhang, TC, Surampalli, RY, Vigneswaran, S, Tyagi, RD, Ong, SL & Kao, CM (eds), *Membrane Technology and Environmental Applications*, American Society of Civil Engineers, USA, pp. 533-580.
- 6. **Naidu, G.**, Jeong, S., **Vigneswaran, S.**, Rice, S. A. (2013). "Microbial activity in biofilter used as a pretreatment for seawater desalination". Desalination, 309, 254-260.
- 7. Jeong, S., Naidu, G., Vollprecht, R., Leiknes, T., Vigneswaran, S. (2016), "In-depth analyses of organic matters in a full-scale seawater desalination plant and an autopsy of reverse osmosis membrane", Separation and Purification Technology 162 (2016) 171-179.
- 9. Jeong, S., Bae, H., **Naidu, G**., Jeong, D., Lee, S., **Vigneswaran, S**. (2013). "Bacterial community structure in a biofilter used as a pretreatment for seawater desalination". Ecological Engineering, 60, 370-381.
- 10. Jeong, S., **Naidu, G., Vigneswaran, S**. (2013). "Submerged membrane adsorption bioreactor as a pretreatment in seawater desalination for biofouling control". Bioresource Technology, 141, 57-64.
- 11. Jeong, S., **Naidu, G., Vigneswaran, S.**, Ma, C. H., Rice, S. A. (2013). "A rapid bioluminescence-based test of assimilable organic carbon for seawater". Desalination, 317, 160-165
- 12. **Naidu, G.**, Jeong, S., Kim, S.-J., Kim, I.S., & **Vigneswaran, S**. (2014). "Organic fouling behavior in direct contact membrane distillation". *Desalination*, 347, pp. 230-239
- 13. Jeong, S., Cho, K., Jeong, D., Lee, S., Leiknes, T., Vigneswaran, S. Bae H. (2017) "Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane". Water Research 124(1) (2017) 227-237.

- 14. Jeong, S., Vollprecht, R., Cho, K., Leiknes, T., **Vigneswaran**, S. Bae, H., Lee, S. (2016) "Advanced organic and biological analysis of dual media filtration used as a pretreatment in a full-scale seawater desalination plant" *Desalination* 385 (2016) 83-92.
- 15. Jeong, S., **Vigneswaran**, S. (2015). "Practical use of standard pore blocking index as an indicator of biofouling potential in seawater desalination". *Desalination*, 365, (2015) 8-14
- 16. Jeong, S., Kim, S. -., Hee Kim, L., Seop Shin, M., Vigneswaran, S., Vinh Nguyen, T., Kim, I. S. (2013). "Foulant analysis of a reverse osmosis membrane used pretreated seawater". *Journal of Membrane Science*, 428, 434-444.

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY CENTRE FOR NANOSCIENCE AND NANOTECHNOLOGY CENTRE FOR WASTE MANAGEMENT

Name of course: Biofouling and Coating for Engineering Applications

Sponsored by Scheme for Promotion of Academic and Research Collaboration (SPARC)

Course level: UG, III Year, (Sixth Semester)

Discipline: Mechanical Engineering

INSTRUCTO	INSTRUCTORS				
INDIA	AUSTRALIA				
Sathyabama Institute of Science and Technology, Chennai, India	University of Technology Sydney (UTS) ,Australia				
Principal Investigator	Principal Investigator				
Dr. Vinita Vishwakarma, Professor/Scientist-F,	Dr.Saravanamuthu Vigneswaran ,Distinguished Professor of Centre for				
Centre for Nanoscience and Nanotechnology	Technologies in Water and Wastewater Environmental Engineering				
Topics Covered: Introduction of biofilms, Types of biofilms, Benefits and risks of	Topics Covered: Membrane processes ,Different forms of membrane				
biofilms, Mechanism of formation of biofilms and applications of biofilms,	fouling (inorganic and organic fouling, biofouling and biofilm				
quantification of biofouling, Prevention of biofouling, Leaching, biocorrosion and	formation),Pore blocking index and Assimilable Organic Carbon, Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-				
antifouling treatment					
Co-Principal Investigator	ray microanalysis (EDS), scanning electron microscopy (SEM), x-ray				
Dr.Dawn S S, Professor/Scientist-E ,Centre for Waste Management	diffraction (XRD); UV-VIS spectroscopy, membrane surface zeta				
Centre of Excellence for Energy Research	potential; contact angle analysis; Biofilter, membrane hybrid system,				
Topics Covered:Degradation of Substrates exposed to harsh environment including	membrane cleaning.				
oil/gas/biofuels and aquatic environment, numerical modeling of biofilm growth					
Research Personnel (India)	Research Personnel (India)				
Dr.Gobi Saravanan Scientist-C ,Centre for Nanoscience and Nanotechnology	Mr.Arun Govind M				
Roughness, Fatigue, corrosion and leaching studies. Nanomaterials synthesis for	Scientific Assistant, Centre of Excellence for Energy Research				
coating applications; sputtering, evaporation, Pulsed Laser Deposition; chemical	Types of degradation; characteristics of materials degradation- causes				
deposition – sol-gel method, dip/spin coating, electrochemical method, electroless	and effects; physical, chemical and biological deterioration;				
coating etc., Properties and application	transmission electron microscopy (TEM), Thermogravimetric analysis				
of metallic coatings, criteria for choosing a coating for biofilm control on metallic	(TGA)				
substrates for various industrial applications					
Dr.Kamalan Kirubaharan, Scientist-C, Centre for Nanoscience and Nanotechnology	Dr.Kamalan Kirubaharan, Scientist-C, Centre for Nanoscience and				
Optical microscopy, Atomic Force microscopy (AFM)	Nanotechnology				
	Centre for Nanoscience and Nanotechnology				
	Raman Spectroscopy, X-ray photoelectron spectroscopy (XPS)				

Course Coordinators: Department of Mechanical Engineering: Dr.Prakash S, Dean; Dr.Durairaj, Assistant Professor and Mr. Maheswaran, Assistant Professor Lab Coordinators: Dr.T.S.Shyju, Dr.Kamalan Kirubaharan A M, Dr. D Dinesh Kumar, Mr.Vengatesh Paneerselvam, Mr.Suresh U

Ms.Nirmala N; Mr. Santhosh A; Mr.Karthik Alagarsamy; Ms.Aswini Priya; Ms.Priyadharshini P